Np-hardness proof and an approximation algorithm for the minimum vertex ranking spanning tree problem
نویسندگان
چکیده
The minimum vertex ranking spanning tree problem (MVRST) is to find a spanning tree of G whose vertex ranking is minimum. In this paper, we show that MVRST is NP-hard. To prove this, we polynomially reduce the 3-dimensional matching problem to MVRST. Moreover, we present a ds 2 e+1 blog2(Ds+1)c+1 -approximation algorithm for MVRST where Ds is the minimum diameter of spanning trees of G.
منابع مشابه
Minimum vertex ranking spanning tree problem for chordal and proper interval graphs
A vertex k-ranking of a simple graph is a coloring of its vertices with k colors in such a way that each path connecting two vertices of the same color contains a vertex with a bigger color. Consider the minimum vertex ranking spanning tree (MVRST) problem where the goal is to find a spanning tree of a given graph G which has a vertex ranking using the minimal number of colors over vertex ranki...
متن کاملA Polynomial Time Algorithm for Obtaining a Minimum Vertex Ranking Spanning Tree in Outerplanar Graphs
The minimum vertex ranking spanning tree problem is to find a spanning tree of G whose vertex ranking is minimum. This problem is NP-hard and no polynomial time algorithm for solving it is known for non-trivial classes of graphs other than the class of interval graphs. This paper proposes a polynomial time algorithm for solving the minimum vertex ranking spanning tree problem on outerplanar gra...
متن کاملOn Approximability of the Minimum-Cost k-Connected Spanning Subgraph Problem
We present the rst truly polynomial-time approximation scheme (PTAS) for the minimum-cost k-vertex-(or, k-edge-) connected spanning subgraph problem for complete Euclidean graphs in R d : Previously it was known for every positive constant " how to construct in a polynomial time a graph on a superset of the input points which is k-vertex connected with respect to the input points, and whose cos...
متن کاملA Metaheuristic Algorithm for the Minimum Routing Cost Spanning Tree Problem
The routing cost of a spanning tree in a weighted and connected graph is defined as the total length of paths between all pairs of vertices. The objective of the minimum routing cost spanning tree problem is to find a spanning tree such that its routing cost is minimum. This is an NP-Hard problem that we present a GRASP with path-relinking metaheuristic algorithm for it. GRASP is a multi-start ...
متن کاملSpeeding up Approximation Algorithms for NP-Hard Spanning Forest Problems by Multi-objective Optimization
We give faster approximation algorithms for the generalization of two NP-hard spanning tree problems. First, we investigate the problem of minimizing the degree of minimum spanning forests. Fischer [4] has shown how to compute a minimum spanning tree of degree at most b · ∆ + dlogb ne in time O(n 4+1/ ln ) for any b > 1, where ∆ is the value of an optimal solution. We model our generalization a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 154 شماره
صفحات -
تاریخ انتشار 2006